3.3.35 \(\int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx\) [235]

Optimal. Leaf size=152 \[ -\frac {14 e^6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {14 e^5 \sqrt {e \sec (c+d x)} \sin (c+d x)}{5 a^2 d}+\frac {14 e^3 (e \sec (c+d x))^{5/2} \sin (c+d x)}{15 a^2 d}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )} \]

[Out]

14/15*e^3*(e*sec(d*x+c))^(5/2)*sin(d*x+c)/a^2/d-14/5*e^6*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)+14/5*e^5*sin(d*x+c)*(e*sec(d*x+c)
)^(1/2)/a^2/d-4/3*I*e^2*(e*sec(d*x+c))^(7/2)/d/(a^2+I*a^2*tan(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3581, 3853, 3856, 2719} \begin {gather*} -\frac {14 e^6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {14 e^5 \sin (c+d x) \sqrt {e \sec (c+d x)}}{5 a^2 d}+\frac {14 e^3 \sin (c+d x) (e \sec (c+d x))^{5/2}}{15 a^2 d}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(11/2)/(a + I*a*Tan[c + d*x])^2,x]

[Out]

(-14*e^6*EllipticE[(c + d*x)/2, 2])/(5*a^2*d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]]) + (14*e^5*Sqrt[e*Sec[c +
 d*x]]*Sin[c + d*x])/(5*a^2*d) + (14*e^3*(e*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(15*a^2*d) - (((4*I)/3)*e^2*(e*S
ec[c + d*x])^(7/2))/(d*(a^2 + I*a^2*Tan[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx &=-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {\left (7 e^2\right ) \int (e \sec (c+d x))^{7/2} \, dx}{3 a^2}\\ &=\frac {14 e^3 (e \sec (c+d x))^{5/2} \sin (c+d x)}{15 a^2 d}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {\left (7 e^4\right ) \int (e \sec (c+d x))^{3/2} \, dx}{5 a^2}\\ &=\frac {14 e^5 \sqrt {e \sec (c+d x)} \sin (c+d x)}{5 a^2 d}+\frac {14 e^3 (e \sec (c+d x))^{5/2} \sin (c+d x)}{15 a^2 d}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}-\frac {\left (7 e^6\right ) \int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx}{5 a^2}\\ &=\frac {14 e^5 \sqrt {e \sec (c+d x)} \sin (c+d x)}{5 a^2 d}+\frac {14 e^3 (e \sec (c+d x))^{5/2} \sin (c+d x)}{15 a^2 d}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}-\frac {\left (7 e^6\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 a^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}\\ &=-\frac {14 e^6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {14 e^5 \sqrt {e \sec (c+d x)} \sin (c+d x)}{5 a^2 d}+\frac {14 e^3 (e \sec (c+d x))^{5/2} \sin (c+d x)}{15 a^2 d}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.17, size = 123, normalized size = 0.81 \begin {gather*} \frac {2 i e^5 e^{i (c+d x)} \left (-47-56 e^{2 i (c+d x)}-21 e^{4 i (c+d x)}+7 \left (1+e^{2 i (c+d x)}\right )^{5/2} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )\right ) \sqrt {e \sec (c+d x)}}{15 a^2 d \left (1+e^{2 i (c+d x)}\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(11/2)/(a + I*a*Tan[c + d*x])^2,x]

[Out]

(((2*I)/15)*e^5*E^(I*(c + d*x))*(-47 - 56*E^((2*I)*(c + d*x)) - 21*E^((4*I)*(c + d*x)) + 7*(1 + E^((2*I)*(c +
d*x)))^(5/2)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sqrt[e*Sec[c + d*x]])/(a^2*d*(1 + E^((2*I
)*(c + d*x)))^2)

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 373 vs. \(2 (158 ) = 316\).
time = 0.70, size = 374, normalized size = 2.46

method result size
default \(\frac {2 \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (21 i \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-21 i \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+21 i \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )-21 i \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )-21 \left (\cos ^{3}\left (d x +c \right )\right )-10 i \cos \left (d x +c \right ) \sin \left (d x +c \right )+24 \left (\cos ^{2}\left (d x +c \right )\right )-3\right ) \left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {11}{2}} \left (\cos ^{3}\left (d x +c \right )\right )}{15 a^{2} d \sin \left (d x +c \right )^{5}}\) \(374\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(11/2)/(a+I*a*tan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

2/15/a^2/d*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(21*I*cos(d*x+c)^3*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)-21*I*cos(d*x+c)^3*(1/(1+cos(d*x+c)))^(1/2)*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)+21*I*cos(d*x+c)^2*(1/(1
+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)-21*
I*cos(d*x+c)^2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+
c),I)*sin(d*x+c)-21*cos(d*x+c)^3-10*I*cos(d*x+c)*sin(d*x+c)+24*cos(d*x+c)^2-3)*(e/cos(d*x+c))^(11/2)*cos(d*x+c
)^3/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(11/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.10, size = 158, normalized size = 1.04 \begin {gather*} -\frac {2 \, {\left (\frac {\sqrt {2} {\left (21 i \, e^{\left (5 i \, d x + 5 i \, c + \frac {11}{2}\right )} + 56 i \, e^{\left (3 i \, d x + 3 i \, c + \frac {11}{2}\right )} + 47 i \, e^{\left (i \, d x + i \, c + \frac {11}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 21 \, {\left (i \, \sqrt {2} e^{\frac {11}{2}} + i \, \sqrt {2} e^{\left (4 i \, d x + 4 i \, c + \frac {11}{2}\right )} + 2 i \, \sqrt {2} e^{\left (2 i \, d x + 2 i \, c + \frac {11}{2}\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right )\right )}}{15 \, {\left (a^{2} d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(11/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

-2/15*(sqrt(2)*(21*I*e^(5*I*d*x + 5*I*c + 11/2) + 56*I*e^(3*I*d*x + 3*I*c + 11/2) + 47*I*e^(I*d*x + I*c + 11/2
))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1) + 21*(I*sqrt(2)*e^(11/2) + I*sqrt(2)*e^(4*I*d*x + 4*I
*c + 11/2) + 2*I*sqrt(2)*e^(2*I*d*x + 2*I*c + 11/2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, e^(I*d*
x + I*c))))/(a^2*d*e^(4*I*d*x + 4*I*c) + 2*a^2*d*e^(2*I*d*x + 2*I*c) + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(11/2)/(a+I*a*tan(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(11/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(e^(11/2)*sec(d*x + c)^(11/2)/(I*a*tan(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{11/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(11/2)/(a + a*tan(c + d*x)*1i)^2,x)

[Out]

int((e/cos(c + d*x))^(11/2)/(a + a*tan(c + d*x)*1i)^2, x)

________________________________________________________________________________________